Evaluation of electrostatic binding of PAMAM dendrimers and charged phthalocyanines by fluorescence correlation spectroscopy.

نویسندگان

  • Emilio Garcia-Fernandez
  • Pedro M R Paulo
  • Sílvia M B Costa
چکیده

We have assessed host-guest interactions between PAMAM dendrimers and charged phthalocyanine probes by Fluorescence Correlation Spectroscopy (FCS). Our results show strong binding in water at low ionic strength with an affinity that decreases from KB ∼ 10(9) to 10(8) M(-1) upon decreasing the phthalocyanine charge of z = -4, -2 and -1. The binding affinity also decreases significantly upon salt addition leading to KB values of ca. 10(5)-10(6) M(-1). The changes of binding affinity probed by varying the phthalocyanine charge, and by changing the ionic strength or pH conditions, allowed us to evaluate the electrostatic contribution (Kel) in dendrimer-phthalocyanine interactions. In particular, this approach afforded values of electrostatic potential for PAMAM dendrimers in water at low ionic strength and at dendrimer concentrations in the nanomolar range. The electrostatic potential of PAMAM generations 4 and 7 are around 50 mV in close agreement with theoretical estimates using the Poisson-Boltzmann cell model. Interestingly, the nonelectrostatic binding is significant and contributes even more than electrostatic binding to dendrimer-phthalocyanine interactions. The nonelectrostatic binding contributes to an affinity of KB above 10(5) M(-1), as measured under conditions of low dendrimer charge and high ionic strength, which makes these dendrimers promising hosts as drug carriers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dendritic chelating agents. 2. U(VI) binding to poly(amidoamine) and poly(propyleneimine) dendrimers in aqueous solutions.

Chelating agents are widely employed in many separation processes used to recover uranyl [U(VI)] from contaminated aqueous solutions. This article describes an experimental investigation of the binding of U(VI) to poly(amidoamine) [PAMAM] and poly(propyleneimine) [PPI] dendrimers in aqueous solutions. We combine fluorescence spectroscopy with bench scale ultrafiltration experiments to measure t...

متن کامل

Controlling colloidal stability of silica nanoparticles during bioconjugation reactions with proteins and improving their longer-term stability, handling and storage

PAPER V. Gubala et al. Controlling colloidal stability of silica nanoparticles during bioconjugation reactions with proteins and improving their longer-term stability, handling and storage Despite the potential of antibody-coated nanoparticles (Ab-NPs) in many biological applications, there are very few successful, commercially available examples in which the carefully engineered nanomaterial h...

متن کامل

Evaluation of poly(amidoamine) dendrimers as potential carriers of iminodiacetic derivatives using solubility studies and 2D-NOESY NMR spectroscopy

The interactions between dendrimers and different types of drugs are nowadays one of the most actively investigated areas of the pharmaceutical sciences. The interactions between dendrimers and drugs can be divided into: internal encapsulation, external electrostatic interaction, and covalent conjugation. In the present study, we investigated the potential of poly(amidoamine) (PAMAM) dendrimers...

متن کامل

Utilizing electrostatic interactions to facilitate F-18 radiolabeling of poly(amido)amine (PAMAM) dendrimers.

The development of methods for the facile conjugation and radiolabeling of poly(amido)amine (PAMAM) dendrimers would be of great benefit in evaluating biomedical applications of these intriguing molecularly defined polymers. Two anionic N-hydroxysuccinimide (NHS) esters (7 and 10) were developed and radiolabeled with fluorine-18 using Cu(I)-catalyzed click reactions. The radiolabeling of a prim...

متن کامل

Studying the Corrosion Protection Behavior of an Epoxy Composite Coating Reinforced with Functionalized Graphene Oxide by Second and Fourth Generations of Poly(amidoamine) Dendrimers (GO-PAMAM-2, 4)

In this research, graphene oxide (GO) nanoparticles were modified by second and fourth generations of poly(amidoamine) dendrimers in order to improve the particle dispersion quality in the epoxy matrix and therefore its barrier anti-corrosion performance. Confirmation on the GO surface modification by Polyamidoamine generation 2 (PAMAM2) and polyamidoamin generation 4 (PAMAM4) was carried o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 6  شماره 

صفحات  -

تاریخ انتشار 2015